Molecular Mass, Molar Mass, and Formula Mass

1. What is the molecular mass of pentane, C₅H₁₂? What is the molar mass?

5 x (12.011 u) + 12 x (1.00794 u) = **72.15 u**

 $M_m = 72.15 \text{ g/mol}$

2. How many moles of oxygen are in 123.45 g?

 $mol \rightarrow g$ 1 mol $O_2 = 2 \times 15.9994$ g/mol = 31.999 g/mol 123.45 g x 1 mol/31.999 g = **3.1858 mol**

3. What is the formula mass of Ca₃(PO₄)₂? How many grams are in 6.54 moles of Ca₃(PO₄)₂?
 Formula mass = 3 x 40.078 u + 2 x 30.9738 u + 8 x 15.9994 u = **310.18 u**

 $6.54 \ mol \ Ca_3 (PO_4)_2 \times \frac{310.18 \ g}{1 \ mol} = 2.03 \times 10^3 \ g \ Ca_3 (PO_4)_2$

- 4. Caffeine, C₈H₁₀N₄O₂, has a molar mass of <u>194.19 g/mol</u>. How many nitrogen atoms are in 2.75 moles of caffeine?
 Moles caffeine → moles N → # N atoms
 2.75 mol caffeine × ^{4 mol N}/_{1 mol caffeine} × ^{6.02×10²³ N atoms}/_{1 mol N} = 6.62 × 10²⁴ N atoms
- 5. How many grams of sodium bromate are in 0.565 moles? $M_m \text{ NaBrO}_3 = 22.99 \text{ g/mol} + 79.904 \text{ g/mol} + 3 \times 15.9994 \text{ g/mol} = 150.89 \text{ g/mol}$ $0.565 \text{ mol} \times \frac{150.89 \text{ g}}{1 \text{ mol}} = 85.3 \text{ g NaBrO}_3$