Solutions to Ideal Gas Law Exercises

Exercises

Exercise 1. Derive the value of the gas constant, R, where the pressure is in torr and volume is in mL.

The ideal gas law is PV = nRT.

Solve for R.

\(\displaystyle R\;=\;\frac{PV}{nT}\)
 
At STP:

P = 760 mmHg, V = 22410. mL, n = 1 mole, T = 273.15 K

\(\displaystyle R\;=\;\frac{PV}{nT}\;=\;\frac{760\;mmHg\times\;22410\;mL}{1\;mol\times\;273.15\;K}\;=\;6.24\times\;10^4\;\frac{mmHg⋅mL}{mol⋅K}\)

Back to Ideal Gas Law

Exercise 2. A sample of N2 gas has a mass of 2.20 g and a volume of 0.45 L at a pressure of 5.95 atm. What is the temperature in °C?

First convert the g of N2 to moles.

\(\displaystyle 2.20\;g\times\;\frac{1\;mol}{28.013\;g}\;=\;0.0785\;mol\;N_2\)

Solve the ideal gas law, PV = nRT for T

\(\displaystyle T\;=\;\frac{PV}{nR}\;=\;\frac{5.95\;atm\times\;0.45\;L}{0.0821\frac{L⋅atm}{mol⋅K}\times\;0.0785\;mol}\;=\;415\;K\)
 
415 K – 273 = 142°C


Back to Ideal Gas Law

Exercise 3. What is the density, g/L, of krypton gas at STP?

Solve the ideal gas law for n/V. Then convert to grams.

PV = nRT, and n/V = P/RT

\(\displaystyle \frac{n}{V}\;=\;\frac{1.00\;atm}{0.0821\frac{L⋅atm}{mol⋅K}\times\;273.15\;K}\;=\;0.0446\;\frac{mol}{L}\)
 
The molar mass of krypton gas is 83.80 g/mol

\(\displaystyle 0.0446\frac{mol}{L}\times\;\frac{83.80\;g}{1\;mol}\;=\;\mathbf{3.74\;\frac{g}{L}}\)



Back to Ideal Gas Law

Exercise 4. A helium gas cylinder has a volume of 4.60 L and a pressure of 150 atm at 23.0°C. How many balloons can be filled if each balloon has a volume of 1.35 L and a pressure of 1.20 atm at 23.0°C?

nRT is constant. Now, we use P1V1 = P2V2 and solve for V2.

\(\displaystyle V_2\;=\;\frac{P_1V_1}{P_2}\;=\;\frac{150\;atm\times\;4.60\;L}{1.20\;atm}\;=\;575\;L\)
 
\(\displaystyle 575\;L\times\;\frac{1\;balloon}{1.35\;L}\;=\;\mathbf{426\;baloons}\)


Back to Ideal Gas Law

Exercise 5. What is the density, g/L, of NH3 gas if the pressure is 750. mmHg at 22.4°C?

The molar mass of NH3 is 17.0 g/mol.

\(\displaystyle d\;=\;\frac{PM_m}{RT}\)
 
P = \(750\;mmHg\;\times\frac{1.00\;atm}{760\;mmHg}\;=\;0.987\;atm\)
Mm = 17.0 g/mol
T = 22.44°C + 273.15 = 295.55 K
R = 0.0821 \(\frac{L⋅atm}{mol⋅K}\)

\(\displaystyle d\;=\;\frac{0.987\;atm\times\;17.0\frac{g}{mol}}{0.0821\frac{L⋅atm}{mol⋅K}\times\;295.55\;K}\;=\;\mathbf{0.69\frac{g}{L}}\)


Back to Ideal Gas Law

Exercise 6. A 129 g sample of a liquid was vaporized in a 250. mL flask at 122°C and 788 mmHg. What is the molecular mass of the substance?

\(\displaystyle M_m\;=\;\frac{mRT}{PV}\)

m = 129 g
T = 122°C + 273 = 395 K
P = 788 mmHg \(\times\;\frac{1\;atm}{760\;mmHg}\;=\;1.037\;atm\)
V = 250 mL = 0.250 L
R = 0.0821 \(\frac{L⋅atm}{mol⋅K}\)

\(\displaystyle M_m\;=\;\frac{129\;g\times\;0.0821\frac{L⋅atm}{mol⋅K}\times\;395\;K}{1.037\;atm\times\;0.250\;L}\;=\;\mathbf{1.61\times\;10^4\;\frac{g}{mol}}\)


Back to Ideal Gas Law

Exercise 7. A reaction should yield 5.86 g of O2. Calculate the volume at 22.3°C and 0.989 atm.

Convert g of O2 to moles. The molar mass of O2 is 31.9988 g/mol

\(5.86\;g\frac{1\;mol}{31.9988\;g}\;=\;0.183\;mol\)
 
Use the ideal gas law, PV = nRT and solve for V.

\(\displaystyle V\;=\frac{nRT}{P}\;=\;\frac{0.183\;mol\times\;0.0821\frac{L⋅atm}{mol⋅K}\times\;295.45\;K}{0.989\;atm}\;=\;\mathbf{4.49\;L}\)



Back to Ideal Gas Law

Exercise 8. Calculate the density of chloroform, CHCl3, at 86.5°C and 795 mmHg.

\(\displaystyle d\;=\;\frac{PM_m}{RT}\)
 
Mm of CHCl3 = 119.38 g/mol
T = 86.5°C + 273.15 = 359.65 K
\(P\;=\;795\;mmHg\times\;\frac{1\;atm}{760\;atm}\;=\;1.046\;atm\)
R = 0.0821 \(\frac{L⋅atm}{mol⋅K}\)
 

\(\displaystyle d\;=\;\frac{1.046\;atm\times\;119.38\frac{g}{mol}}{0.0821\;\frac{L⋅atm}{mol⋅K}\times\;359.65\;K}\;=\;\mathbf{4.23\frac{g}{L}}\)

Back to Ideal Gas Law

Exercise 9. Calculate the number of grams of butane gas, C4H10, with a pressure of 0.902 atm, at a temperature of 65.5°C, and a volume of 2.6 L.

Use the ideal gas law, PV = nRT and solve for n.

\(\displaystyle n\;=\;\frac{PV}{RT}\)
 
P = 0.902 atm
V = 2.6 L
T = 65.5°C + 273.15 = 338.65 K

\(\displaystyle n\;=\;\frac{0.902\;atm\;\times 2.6\;L}{0.0821\frac{L⋅atm}{mol⋅K}\times\;338.65\;K}\;=\;0.0844\;mol\)
 
Covert 0.0844 moles of butane to g. The molar mass of butane is 58.12 g/mol.

\(\displaystyle 0.0844\;mol\times\;\frac{58.12\;g}{mol}\;=\;\mathbf{4.91\;g\;butane}\)



Back to Ideal Gas Law

Exercise 10. A mass of 248 g of Cl2 is required for an experiment. What would the volume be at 38.5°C and 1862 mmHg?

Convert g of Cl2 to moles. The molar mass of Cl2 is 70.9 g/mol

\(248\;g\frac{1\;mol}{70.9\;g}\;=\;3.498\;mol\)
 
T = 38.5°C + 273.15 = 311.73 K
\( P\;=\frac{1\;atm}{760\;mmHg}\;=\;2.45\;atm\)

Use the ideal gas law, PV = nRT and solve for V.

\(\displaystyle V\;=\frac{nRT}{P}\;=\;\frac{3.498\;mol\times\;0.0821\frac{L⋅atm}{mol⋅K}\times\;311.73\;K}{2.45\;atm}\;=\;\mathbf{36.5\;L}\)

Back to Ideal Gas Law

Leave a Reply

Your email address will not be published. Required fields are marked *