Exercises
Exercise 1. Calculate the rms speed of N2 at 98.2°C.
The molar mass of N2 = 28.0 g/mol = 0.028 kg/mol
T = 98.2°C + 273.15 = 371.35 K
R = 8.314 \(\frac{kg⋅m^2}{s^2⋅mol⋅K}\)
\(\displaystyle \sqrt{\frac{3\times\;8.314\frac{kg⋅m^2}{s^2⋅mol⋅K}\times\;371.35\;K}{0.028\frac{kg}{mol}}}\;=\;\mathbf{5.75\times 10^2\;\frac{m}{s}}\)
Back to Effusion and Diffusion
Exercise 2. Uranium hexafluride, UF6, sublimes at 57°C under normal atmospheric pressure. What is the rms speed of UF6 at 57°C? Report your answer in m/s.
The molar mass of UF6 = 352.02 g/mol = 0.35202 kg/mol
T = 57°C + 273.15 = 330 K
R = 8.314 \(\frac{kg⋅m^2}{s^2⋅mol⋅K}\)
\(\displaystyle \sqrt{\frac{3\times\;8.314\frac{kg⋅m^2}{s^2⋅mol⋅K}\times\;330\;K}{0.35202\frac{kg}{mol}}}\;=\;\mathbf{1.53\times 10^2\;\frac{m}{s}}\)
Back to Effusion and Diffusion
Exercise 3. What is the molar mass of a gas that diffuses 1.98 times faster than Xe gas.
\(\displaystyle \frac{\mathrm{rate\;of\;effusion\;of\;gas\;A}}{\mathrm{rate\;of\;effusion\;of\;Xe}}\;=\;\sqrt{\frac{M_mXe}{M_mA}}\)
\(\displaystyle \frac{\mathrm{rate\;of\;effusion\;of\;Gas\;A}}{\mathrm{rate\;of\;effusion\;of\;Xe}}\;=\;1.98\;=\sqrt{\frac{131.29\frac{g}{mol}}{M_m\;Gas\;A}}\)Square both sides of the equation and solve for Mm of Gas A.
\(\displaystyle (1.98)^2\;=\frac{131.29\frac{g}{mol}}{M_m\;Gas\;A}\)
\(\displaystyle M_m\;Gas\;A\;=\;\frac{131.29\frac{g}{mol}}{1.98^2}\;=\;\mathbf{33.49\frac{g}{mol}}\)
Back to Effusion and Diffusion
Exercise 4. What is the molar mass of a gas that diffuses 1.87 times slower than Kr gas?
\(\displaystyle \frac{\mathrm{rate\;of\;effusion\;of\;gas\;A}}{\mathrm{rate\;of\;effusion\;of\;Kr}}\;=\;\sqrt{\frac{M_mKr}{M_mA}}\)
\(\displaystyle \frac{\mathrm{rate\;of\;effusion\;of\;Gas\;A}}{\mathrm{rate\;of\;effusion\;of\;Kr}}\;=\;\frac{1}{1.87}\;=\sqrt{\frac{83.798\frac{g}{mol}}{M_m\;Gas\;A}}\)Square both sides of the equation and solve for Mm of Gas A.
\(\displaystyle \biggl(\frac{1}{1.87}\biggr)^2\;=\frac{83.798\frac{g}{mol}}{M_m\;Gas\;A}\)
\(\displaystyle M_m\;Gas\;A\;=\;\frac{83.798\frac{g}{mol}}{\frac {1}{1.87^2}}\;=\;\mathbf{293\frac{g}{mol}}\)
Back to Effusion and Diffusion
Exercise 5. Calculate the ratio of the rates of effusion of N2 and N2O under the same conditions.
The molar mass of N2O is 43.999 g/mol and N2 is 28.0 g/mol.
\(\displaystyle \frac{\mathrm{rate\;of\;effusion\;of\;N_2}}{\mathrm{rate\;of\;effusion\;of\;N_2O}}\;=\;\sqrt{\frac{43.999\frac{g}{mol}}{28.0\frac{g}{mol}}}\;=\;\mathbf{1.25}\)The N2 effuses 1.25 times faster than N2O.
Back to Effusion and Diffusion
Exercise 6. A given volume of N2 takes 64.6 s to effuse. Another gas, under the same conditions, took 88.2 s to effuse. Calculate the molar mass of this gas.
\(\displaystyle \frac{t_{gas}}{t_{N_2}}\;=\;\sqrt{\frac{M_m\;gas}{M_m\;N_2}}\)
\(\displaystyle \frac{88.2\;s}{64.6\;s}\;=\;\sqrt{\frac{M_m\;gas}{28.0\frac{g}{mol}}}\)
Square both sides of the equation and solve for the molar mass of the gas.
\(\displaystyle \biggl(\frac{88.2\;s}{64.6\;s}\biggr)^2\;=\;\frac{M_m\;gas}{28.0\frac{g}{mol}}\)
Mm gas = 52.2 g/mol
Back to Effusion and Diffusion