Solutions to Integrated Rate Laws and Half-Life Exercises

Exercises

Exercise 1. A reaction, A + B → P, has a rate constant of 3.2 x 10-3 s-1. If the experiment begins with a concentration of A equal to 0.25 M, how long, in s, will it take for the concentration of A to decrease to 0.047 M?

From the units of the rate constant, we are first order with respect to [A]. We use the first-order integrated rate law.

\(\displaystyle ln\biggl(\frac{[A]_t}{[A]_0}\biggr)\;=\;-kt\)
 

k = 3.2 x 10-3 s-1, [A]0 = 0.25 M, [A]t = 0.047 M, t = ?

Solve the equation for t

\(\displaystyle t\;=\;-\frac{ln\biggl(\frac{[A]_t}{[A]_0}\biggr)}{k}\;=\;-\frac{ln\biggl(\frac{[0.047\;M]}{[0.25\;M]}\biggr)}{3.2\times 10^{-3}s^{-1}}\;=\;\mathbf{522\;s}\)

Back to Integrated Rate Laws and Half-Life

Exercise 2. The half-life for the radioactive decay of K-40 is 1.30 x 109 years. How long will it take for K-40 to decay to 20% of its initial concentration? All radioactive decay follows first order kinetics.

We need to find the rate constant, k, using the first order half-life equation.

\(\displaystyle k\;=\;\frac{0.693}{t_{1/2}}\;=\;\frac{0.693}{1.30\times 10^9\;yr}\;=\;5.3\times 10^{-10}\;yr^{-1}\)
 

Now, we can use the first order integrated rate law to find t.

k = 5.3 x 10-10 yr-1, [A]t = 20%, [A]0 = 100%

\(\displaystyle t\;=\;-\frac{ln\biggl(\frac{[A]_t}{[A]_0}\biggr)}{k}\;=\;-\frac{ln\biggl(\frac{[20\%]}{[100\%]}\biggr)}{5.3\times 10^{-10}yr^{-1}}\;=\;\mathbf{1.3\times 10^9\;yr}\)
 


Back to Integrated Rate Laws and Half-Life

Exercise 3. The decomposition of cyclobutane (C4H8) is a first order process. The half-life is 7.96 x 10-3 seconds. If the initial concentration of cyclobutane is 8.50 M, what is the concentration after 0.045 seconds?

First, find the rate constant (k) from the half-life.

\(\displaystyle k\;=\;\frac{0.693}{t_{1/2}}\;=\;\frac{0.693}{7.96\times 10^{-3}\;s}\;=\;87.1\;s^{-1}\)
 
The first-order integrated rate law is

\(\displaystyle ln\biggl(\frac{[A]_t}{[A]_0}\biggr)\;=\;-kt\)
 
[A]t = ?, [A]0 = 8.50 M, k = 87.1 s-1, t = 0.045 s

Solve for ln[C_4H_8]t in the integrated rate law

\(\displaystyle ln[C_4H_8]_t\;=\;-kt\;+\;ln[C_4H_8]_0\)
 
\(\displaystyle ln[C_4H_8]\;=\;-87.1 s^{-1}\times 0.045\;s\;+\;ln[8.50\;M]\;=\;-1.78\)
 
Take the antilog ln[C4H8] = -1.78

e-1.78 = 0.169 M


Back to Integrated Rate Laws and Half-Life

Exercise 4. Consider the following reaction at 250oC.

2 NO2 (g) → 2 NO (g) + O2 (g)

The rate constant was determined to be 0.483 M-1s-1. If the initial concentration is 8.65 M, what is the concentration after 2.3 minutes? What is the half-life of NO2?

The units of k tell us the reaction is second order. The second order integrated rate law is:

\(\displaystyle \frac{1}{[NO]_t}\;=\;kt\;+\;\frac{1}{[NO]_0}\)
 

[A]t = ?, [A]0 = 8.65 M, k = 0.483 M-1s-1, t = 2.3 min = 138 s

\(\displaystyle \frac{1}{[NO]_t}\;=\;0.483\;M^{-1}s^{-1}\times \;138\;s\;+\;\frac{1}{[8.65\;M]}\;=\;66.8\;\;\;\mathrm{and}\;\;\;\frac{1}{66.8}\;=\;0.0150\;M\)
 
The half-life is given by:

\(\displaystyle t_{1/2}\;=\;\frac{1}{k[A]_0}\;=\;\frac{1}{0.483\;M^{-1}s^{-1}\times\;8.65\;M}\;=\;0.239\;s\)

 

Back to Integrated Rate Laws and Half-Life

Exercise 5. Consider the following reaction of butadiene (C4H6) gas.

2 C4H6 → C8H12 (g)

At a given temperature, the reaction is second order and the half-life of butadiene is 236 seconds. If the initial concentration of butadiene was 0.985 M, what is the concentration after 1.5 minutes?

Find k using the half-life equation for a second order reaction.

\(\displaystyle k\;=\;\frac{1}{t_{1/2}[A]_0}\)
 
Convert 1.5 minutes to seconds. 1.5 min = 90 s

\(\displaystyle k\;=\;\frac{1}{236\;s\times\;0.985\;M}\;=\;4.30\times 10^{-3}\;M^{-1}s^{-1}\)
 
The second order rate law is:

\(\displaystyle \frac{1}{[A]_t}\;=\;kt\;+\;\frac{1}{[A]_0}\)
 
[C4H6]t = ?, [C4H6]0 = 0.985 M, k = 4.30 x 10-3 M-1s-1, t = 90 s

\(\displaystyle \frac{1}{[C_4H_6]_t}\;=\;4.30\times 10^{-3}\;M^{-1}s^{-1}\times\;90\;s\;+\;\frac{1}{0.985\;M}\;=\;1.40\)
 
\(\displaystyle [C_4H_6]_t\;=\;\frac{1}{1.40}\;=\;\mathbf{0.713\;M}\)

 

Back to Integrated Rate Laws and Half-Life

Leave a Reply

Your email address will not be published. Required fields are marked *