Solutions to Rates of Reaction Exercises

Exercises

Exercise 1. Consider the plot below. What is the average rate for the disappearance of CO2 over the first 40 minutes of the reaction? What is the average rate between 60 and 80 minutes?

Concentration/Time plot for the disappearance of carbon dioxide

At t = 0, the concentration is 0.65 M. At t = 40, the concentration is 0.41 M.

\(\displaystyle -\frac{0.41\;M\;-\;0.65\;M}{40\;min\;-\;0\;min}\;=\;\mathbf{6.0\times 10^{-3}\;M/min}\)
 
At t = 60 min, the molarity is 0.41 M. At t = 80 min, the molarity is 0.35 M.

\(\displaystyle -\frac{0.35\;M\;-\;0.41\;M}{80\;min\;-\;60\;min}\;=\;\mathbf{3.0\times 10^{-3}\;M/min}\)
 


Back to Rates of Reaction

Exercise 2. Consider the table below for the disappearance of C4H9Cl.

Concentration/time data for C4H9Cl

Calculate the average rate in the time interval 100 – 400 seconds.

\(\displaystyle -\frac{0.090\;M\;-\;0.164\;M}{400\;s\;-\;100\;s}\;=\;\mathbf{2.5\times 10^{-4}\;M/s}\)

Back to Rates of Reaction

Exercise 3. Write the rate expression in terms of products and reactants for the following reaction:

3 I (aq) + H3AsO4 (aq) + 2 H+ (a) → I3 (aq) + H3AsO3 (aq) + H2O (l)

\(\displaystyle -\frac{\Delta [\mathrm{I^-}]}{3\Delta t}\;=\;-\frac{\Delta [\mathrm{H_3AsO_4}]}{\Delta t}\;=\;-\frac{\Delta [\mathrm{H^+}]}{2\Delta t}\;=\;\frac{\Delta [\mathrm{I_3^-}]}{\Delta t}\;=\;\frac{\Delta [\mathrm{H_3AsO_3}]}{\Delta t}\;=\;\frac{\Delta [\mathrm{H_2O}]}{\Delta t}\)

Back to Rates of Reaction

Exercise 4. Consider the following chemical reaction:

4 NH3 (g) + 5 O2 (g) → 4 NO (g) + 6 H2O (g)

What is the rate of disappearance of NH3 if the rate of formation of NO is 2.6 x 10-5 M/s? What is the rate of the disappearance of O2 in the same time interval?

\(\displaystyle -\frac{\Delta [\mathrm{NH_3}]}{4\Delta t}\;=\;\frac{\Delta [\mathrm{NO}]}{4\Delta t}\)
 
Multiply both sides by 4

\(\displaystyle -\frac{\Delta [\mathrm{NH_3}]}{\Delta t}\;=\;\frac{\Delta [\mathrm{NO}]}{\Delta t}\)
 
\(\displaystyle -\frac{\Delta [\mathrm{NH_3}]}{\Delta t}\;=\;2.6\times 10^{-5}\;M/s\)
 
\(\displaystyle \frac{\Delta [\mathrm{NO}]}{4\Delta t}\;=\;-\frac{\mathrm[\Delta O_2]}{5\Delta t}\)
 

Multiply both sides by 5

\(\displaystyle \frac{5\Delta [\mathrm{NO}]}{4\Delta t}\;=\;-\frac{\mathrm[\Delta O_2]}{\Delta t}\)
 
\(\displaystyle -\frac{\mathrm[\Delta O_2]}{\Delta t}\;=\;\frac{5}{4}\times\;(2.6\times 10^{-5}\;M/s)\;=\;3.3\times 10^{-5}\;M/s\)
 
Back to Rates of Reaction

Leave a Reply

Your email address will not be published. Required fields are marked *