Exercises
Exercise 1. Consider the plot below. What is the average rate for the disappearance of CO2 over the first 40 minutes of the reaction? What is the average rate between 60 and 80 minutes?
At t = 0, the concentration is 0.65 M. At t = 40, the concentration is 0.41 M.
\(\displaystyle -\frac{0.41\;M\;-\;0.65\;M}{40\;min\;-\;0\;min}\;=\;\mathbf{6.0\times 10^{-3}\;M/min}\)
At t = 60 min, the molarity is 0.41 M. At t = 80 min, the molarity is 0.35 M.
\(\displaystyle -\frac{0.35\;M\;-\;0.41\;M}{80\;min\;-\;60\;min}\;=\;\mathbf{3.0\times 10^{-3}\;M/min}\)
Exercise 2. Consider the table below for the disappearance of C4H9Cl.
Calculate the average rate in the time interval 100 – 400 seconds.
\(\displaystyle -\frac{0.090\;M\;-\;0.164\;M}{400\;s\;-\;100\;s}\;=\;\mathbf{2.5\times 10^{-4}\;M/s}\)
Exercise 3. Write the rate expression in terms of products and reactants for the following reaction:
\(\displaystyle -\frac{\Delta [\mathrm{I^-}]}{3\Delta t}\;=\;-\frac{\Delta [\mathrm{H_3AsO_4}]}{\Delta t}\;=\;-\frac{\Delta [\mathrm{H^+}]}{2\Delta t}\;=\;\frac{\Delta [\mathrm{I_3^-}]}{\Delta t}\;=\;\frac{\Delta [\mathrm{H_3AsO_3}]}{\Delta t}\;=\;\frac{\Delta [\mathrm{H_2O}]}{\Delta t}\)
Exercise 4. Consider the following chemical reaction:
4 NH3 (g) + 5 O2 (g) → 4 NO (g) + 6 H2O (g)
What is the rate of disappearance of NH3 if the rate of formation of NO is 2.6 x 10-5 M/s? What is the rate of the disappearance of O2 in the same time interval?
\(\displaystyle -\frac{\Delta [\mathrm{NH_3}]}{4\Delta t}\;=\;\frac{\Delta [\mathrm{NO}]}{4\Delta t}\)
Multiply both sides by 4
\(\displaystyle -\frac{\Delta [\mathrm{NH_3}]}{\Delta t}\;=\;\frac{\Delta [\mathrm{NO}]}{\Delta t}\)
\(\displaystyle -\frac{\Delta [\mathrm{NH_3}]}{\Delta t}\;=\;2.6\times 10^{-5}\;M/s\)
\(\displaystyle \frac{\Delta [\mathrm{NO}]}{4\Delta t}\;=\;-\frac{\mathrm[\Delta O_2]}{5\Delta t}\)
Multiply both sides by 5
\(\displaystyle \frac{5\Delta [\mathrm{NO}]}{4\Delta t}\;=\;-\frac{\mathrm[\Delta O_2]}{\Delta t}\)
\(\displaystyle -\frac{\mathrm[\Delta O_2]}{\Delta t}\;=\;\frac{5}{4}\times\;(2.6\times 10^{-5}\;M/s)\;=\;3.3\times 10^{-5}\;M/s\)
Back to Rates of Reaction