Solutions to Weak Acid Equilibria Exercises

Exercises

Exercise 1. What is the pH of aqueous 0.25 M nitrous acid, HNO2? Ka = 4.5 x 10-4.

First, write the equation and the Ka expression.

HNO2 (aq) + H2O (l) ⇄ NO2 + H3O+ (aq)

\(\displaystyle K_a\;=\;\frac{[\mathrm{NO_2^-}][\mathrm{H_3O^+}]}{[\mathrm{HNO_2}]}\;=\;4.5\times 10^{-4}\)
 

Set up an ICE table.

ICE table for 0.25 M HNO2

Put the equilibrium concentrations into the Ka expression.

\(\displaystyle \frac{(x)(x)}{0.25\;-\;x}\;=\;4.5\times 10^{-4}\)
 
Make the assumption x is very small. 0.25 M – x ≅ 0.25 M

\(\displaystyle \frac{x^2}{0.25}\;=\;4.5\times 10^{-4}\)
 
Solve for x.

\(\displaystyle x\;=\;\sqrt{0.25\times\;(4.5\times 10^{-4})}\;=\;0.0106\;M\)
 
Check the assumption using the 5% rule.

\(\displaystyle \frac{0.0106}{0.25}\times\;100\;=\;4.2\%\)
 
The assumption is valid: 4.2% < 5.0%. The pH = -log(0.0106) = 1.97

Back to Weak Acid Equilibria

Exercise 2. An aqueous hydrozoic acid, HN3, solution has a pH of 3.26. What was the initial concentration of the solution? Ka = 1.9 x 10-5.

First, we need the concentration of [H3O+].

[H3O+] = 10-pH = 10-3.26 = 5.5 x 10-4 M.

HN3 (aq) + H2O (l) ⇄ H3O+ (aq) + N3 (aq)

\(\displaystyle K_a\;=\;\frac{[\mathrm{N_3^-}][\mathrm{H_3O^+}]}{[\mathrm{HN_3}]}\;=\;1.9\times 10^{-5}\)
 
The concentration of H3O+ and N3 is 5.5 x 10-4 M. We need to solve Ka for [HN3].

\(\displaystyle [HN_3]\;=\;\frac{[\mathrm{N_3^-}][\mathrm{H_3O^+}]}{1.9\times 10^{-5}}\)
 
\(\displaystyle [HN_3]\;=\;\frac{(5.5\times 10^{-4})\times(5.5\times 10^{-4})}{1.9\times 10^{-5}}\;=\;\mathbf{0.016\;M}\)


Back to Weak Acid Equilibria

Exercise 3. The percent ionization of ascorbic acid is 0.35%. What was the initial concentration of the ascorbic acid if the pH of the solution is 4.85? Ka = 1.8 x 10-5.

\(\displaystyle \%\;Ionization\;=\;\frac{x}{[\mathrm CH_3COOH]_{init}}\times\;100\)
 
The hydronium ion concentration is equal to x. Find the hydronium ion concentration using the pH.

[H3O+] = 10-pH = 10-4.85 = 1.4 x 10-5 M.

Now we can solve the equation for [CH3COOH]init

\(\displaystyle [CH_3COOH]_{init}\;=\;\frac{1.4\times 10^{-5}\;M}{0.35}\times\;100\;=\;\mathbf{4.0\times 10^{-3}\;M}\)

Back to Weak Acid Equilibria

Exercise 4. Calculate the pH of an aqueous solution that is 0.025 M in formic acid, HCOOH. Ka = 1.8 x 10-4. What is the percent dissociation?

First, write the equation and the Ka expression.

HCOOH (aq) + H2O (l) ⇄ COOH + H3O+ (aq)

\(\displaystyle K_a\;=\;\frac{[\mathrm{COOH^-}][\mathrm{H_3O^+}]}{[\mathrm{COOH}]}\;=\;1.8\times 10^{-4}\)

 
Set up an ICE table.

ICE table for 0.025 M HCOOH

Put the equilibrium concentrations into Ka.

\(\displaystyle \frac{(x)(x)}{0.025\;-\;x}\;=\;1.8\times 10^{-4}\)
 
Make the assumption x is very small. 0.025 M – x ≅ 0.025 M

\(\displaystyle \frac{x^2}{0.025}\;=\;1.8\times 10^{-4}\)
 
Solve for x.

\(\displaystyle x\;=\;\sqrt{0.025\times\;(1.8\times 10^{-4})}\;=\;2.1\times 10^{-3}\;M\)
 
Check the assumption using the 5% rule.

\(\displaystyle \frac{2.1\times 10^{-3}}{0.025}\times\;100\;=\;8.4\%\)
 
The assumption is not valid: 8.4% > 5.0%, and we cannot neglect x. We have to use the quadratic formula. First, we rewrite our Ka expression with x.

\(\displaystyle \frac{x^2}{0.025\;-\;x}\;=\;1.8\times 10^{-4}\)

Gather all of the like terms and set the equation to zero.

x2 + 1.8 x 10-4x – 4.5 x 10-6 = 0

a = 1, b = 1.8 x 10-4, and c = – 4.5 x 10-6

Use the quadratic formula.

\(\displaystyle \frac{-b\;\pm\;\sqrt{b^2\;-\;4ac}}{2a}\)
 
\(\displaystyle \frac{-1.8\times 10^{-4}\;\pm\;\sqrt{(1.8\times 10^{-4})^2\;-\;4\times 1\times(-4.5\times 10^{-6})}}{2\times\;1}\)
 

\(\displaystyle \frac{-1.8\times 10^{-4}\;\pm 0.004246}{2}\)
 
There are two solutions for x. x = 0.00203, x = -0.00221. We cannot have a negative concentration, so x = 0.00203 M.

pH = -log(0.00203) = 2.69

% Dissociation = \(\displaystyle\frac{0.00203\;M}{0.025\;M}\times\;100\;=\;\mathbf{8.12\%}\)

Back to Weak Acid Equilibria

Exercise 5. Calculate the pH, pOH, and the concentrations of all species in 0.45 M HF. Ka = 3.5 x 10-4.

Write a balanced equation and the Ka expression.

HF (aq) + H2O (l) ⇄ F (aq) + H3O+ (aq)

\(\displaystyle K_a\;=\;\frac{[H_3O^+][F^-]}{[HF]}\;=\;3.5\times 10^{-4}\)
 
Set up an ICE Table

ICE table for 0.45 M HF

Make the assumption that 0.45 – x ≅ 0.45 M.

Plug the equilibrium concentrations into Ka and solve for x.

\(\displaystyle \frac{x^2}{0.45}\;=\;3.5\times 10^{-4}\)
 
\(\displaystyle x\;=\;\sqrt{0.45\times\;(3.5\times 10^{-4})}\;=\;0.0125\;M\)
 
Check the assumption using the 5% rule.

\(\displaystyle \frac{0.0125\;M}{0.45\;}\times 100\;=\;2.8\%\)
 
2.8% < 5%, therefore, the assumption is valid. At equilibrium, the concentrations of [HF], [F], and [H3O+] are:

[HF]eq = 0.45 M – 0.0125 M = 0.44 M
[F]eq = [H3O+]eq = 0.013 M

The pH = -log(0.0125) = 1.90

The pOH = 14.00 – 1.90 = 12.10



Back to Weak Acid Equilibria

Exercise 6. A benzoic acid, C6H5COOH, solution has a pH of 2.68. What is the percent dissociation of this solution? Ka = 6.5 x 10-5

C6H5COOH (aq) + H2O (l) ⇄ C6H5COO (aq) + H3O+ (aq)

\(\displaystyle K_a\;=\;\frac{[C_6H_5COO^-][H_2O]}{C_6H_5COOH}\;=\;6.5\times 10^{-5}\)
 
[H3O+] = 10-2.68 = 2.09 x 10-3 M. [C6H5COO] is also equal to 2.09 x 10sup>-3 M.

Solve Ka for [C6H5COOH]init

\(\displaystyle [C_6H_5COOH]\;=\;\frac{(2.09 \times 10^{-3})^2}{6.5\times 10^{-5}}\;=\;0.067\;M\)
 
\(\displaystyle \%\;dissociation\;=\;\frac{2.09\times 10^{-3}\;M}{0.067\;M}\times 100\;=\;\mathbf{3.1\;\%}\)


Back to Weak Acid Equilibria

Exercise 7. Vinegar contains 5.0% by mass of acetic acid (CH3COOH) in water. If the pH of the solution is 2.50 and Ka = 1.8 x 10-5, what is the percent dissociation of CH3COOH in vinegar? The density of vinegar is 1.00 g/mL.

We need to calculate the molarity of the acetic acid. The solution is 5.0% by mass which means we have

\(\displaystyle\frac{5.0\;g\;CH_3COOH}{100\;g\;\mathrm{solution}}\).
 
Molarity is

\(\displaystyle\frac{\mathrm{moles\;CH_3COOH}}{\mathrm{L\;solution}}\)

 
The molar mass of acetic acid is 60.052 g/mol.

\(\displaystyle 5.00\;g\times\frac{1\;mol}{60.052\;g}\;=\;0.0833\;mol\;CH_3COOH\)
 

Use the density to convert g of solution to mL of solution. The mass of the solution is 100 g.

\(\displaystyle 100\;g\frac{1\;mL}{1.00\;g}\;=\;100\;mL\;=\;0.100\;L\)
 
\(M\;=\;\frac{0.0833\;mol}{0.100\;L}\;=\;0.833\;M\)
 
Calculate the percent dissociation with x = 10-2.5 = 3.2 x 10-3

\(\displaystyle \% dissociation\;=\;\frac{3.2\times 10^{-3}\;M}{0.833\;M}\times\;100\;=\;\mathbf{0.38\;\%}\)

Back to Weak Acid Equilibria

Leave a Reply

Your email address will not be published. Required fields are marked *