Exercises
Exercise 1.Calculate the pH of an aqueous 0.45 M selenious acid (H2SeO3) solution. Ka1 = 2.4 x 10-3, Ka2 = 4.8 x 10-9
H2SeO3(aq) + H2O(l) ⇄ HSeO3–(aq) + H3O+(aq) \(K_{a1}=2.4\times10^{-3}\)
Set up an ICE table.
Assume x is neglible and 0.45 – x ≅ 0.45 M
\(\displaystyle K_a\;=\;\frac{x^2}{0.45}\;=\;2.4\times 10^{-3}\)
Solve for x.
\(\displaystyle x\;=\;\sqrt{0.45\times\;(2.4\times 10^{-3})}\;=\;0.033\;M\)
Check assumption.
\(\displaystyle \frac{0.033\;M}{0.45\;M}\times\;100\;=\;7.3\%\)
7.3% > 5% — we need to solve for x using the quadratic formula.
\(\displaystyle \frac{x^2}{0.45\;-\;x}\;=\;2.4\times 10^{-3}\)
Multiply, collect all like terms, and set the equation to zero.
x2 + (2.4 x 10-3)x – 0.00108 = 0
a = 1, b = 2.4 x 10-3, c = -0.00108
Use the quadratic formula.
\(\displaystyle \frac{-b\;\pm\;\sqrt{b^2\;-\;4ac}}{2a}\)
\(\displaystyle \frac{-2.4\times 10^{-3}\;\pm\;\sqrt{(2.4\times 10^{-3})^2\;-\;4\times 1\times\;-0.00108}}{2\times\;1}\)
\(\displaystyle \frac{-2.4\times 10^{-3}\;\pm\;0.0658}{2}\)
x = 0.0317 M, x = -0.0341
x = 0.0317 M
pH = -log(0.0317) = 1.50
The second dissociation will be neglible because Ka2 = 4.8 x 10-9. This is a very small value. We can solve for x, the hydronium concentration, just to make sure.
HSeO4– (aq) + H2O (l) ⇄ SeO42- (aq) + H3O+ (aq)
\(\displaystyle K_{a2}\;=\;\frac{[SeO_4^{2-}][H_3O^+]}{[HSeO_4^-]}\;=\;4.8\times 10^{-9}\)
\(\displaystyle x\;=\;\sqrt{0.0317\times\;4.8\times 10^{-9}}\;=\;1.2\times 10^{-5}\;M\)
Check the assumption.
\(\displaystyle \frac{1.2\times 10^{-5}\;M}{0.0317\;M}\times\;100\;=\;0.038\%\)
0.038% < 5% -- our assumption is valid.
The pH is 1.50.
Back to Polyprotic Acids
Exercise 2. Calculate the pH and the concentrations of all species in an aqueous solution of 0.25 M H2S. Ka1 = 1.0 x 10-7, Ka2 = 1.0 x 10-19
H2S (aq) + H2O (l) ⇄ HS– (aq) + H3O+ (aq) Ka1 = 1.0 x 10-7
Set up an ICE table for the first dissocation
Assume x is negligible and 0.25 – x ≅ 0.25
\(\displaystyle \frac{x^2}{0.25}\;=\;1.0\times 10^{-7}\)
x = 1.6 x 10-4
Check assumption using 5% rule.
\(\displaystyle \frac{1.6\times 10^{-4}}{0.25}\times\;100\;=\;0.064\%\)
0.064% < 5% -- our assumption is valid.
[H2S] = 0.25 – 1.6 x 10-4 = 0.25 M
[H3O+] = 1.6 x 10-4 M
[HS–] = 1.6 x 10-4 M
The second dissociation is:
HS– (aq) + H2O (l) ⇄ S2- (aq) + H3O+ (aq) Ka2 = 1.0 x 10-19
Set up an ICE table. Use the concentrations from the first dissociation.
Assume x is negligible and 1.6 x 10-4 M – x ≅ 0.25 1.6 x 10-4 M
\(\displaystyle \frac{(1.6\times 10^{-4})x}{1.6\times 10^{-4}}\;=\;1.0\times 10^{-19}\)
x = 1.0 x 10-19 M
Check assumption using 5% rule
\(\displaystyle \frac{1.0\times 10^{-19}}{1.6\times 10^{-4}}\times\;100\;=\;6.25\times 10^{-14}\;\%\)
6.25 x 10-14 % < 5% -- our assumption is valid, and we are able to neglect x.
The concentrations of all species are:
[H2S] = 0.25 – 1.6 x 10-4 = 0.25 M
[H3O+] = 1.6 x 10-4 M
[HS–] = 1.6 x 10-4 M
[S2-] = 1.0 x 10-19 M
The pH of the solution is:
pH = -log(1.6 x 10-4) = 3.80
Exercise 3.Selenic acid, H2SeO4, is a strong acid. The first dissociation essentially goes to completion. Calculate the concentration of SeO42- ion in a 2.5 M H2SeO4 aqueous solution. pKa2 = 1.70.
H2SeO4 (aq) + H2O (l) → HSeO4– (aq) + H3O+ (aq)
The first dissociation essentially goes to completion. The concentrations of H3O+ and HSeO4– are 2.5 M.
The second dissociation has pKa2 = 1.70. Ka = 10-1.70 = 0.01995 M.
HSeO4– (aq) + H2O (l) ⇄ SeO42- (aq) + H3O+ (aq)
Set up an ICE table.
Assume 2.5 M – x and 2.5 M + x ≅ 2.5 M
\(\displaystyle \frac{x(2.5)}{2.5}\;=\;0.01995\)
x = 0.01995 M
Check the assumption
\(\displaystyle \frac{0.01995\;M}{2.5\;M}\times\;100\;=\;0.8\%\)
0.8% < 5% -- our assumption is valid.
[SeO42-] = 0.020 M
Exercise 4. Tartaric acid, C4H6O6, is a diprotic acid with pKa1 = 2.89 and pKa2 = 4.40. What is the pH of a 0.65 M aqueous solution of tartaric acid?
Convert pK values to Ka values.
Ka1 = 10-2.89 = 1.3 x 10-3
Ka2 = 10-4.40 = 3.98 x 10-5
The chemical equation for the first dissociation is:
C4H6O6 (aq) + H2O (l) ⇄ C4H5O6– (aq) + H3O+ (aq)
Set up an ICE table
Assume x is negligible and 0.65 M – x ≅ 0.65 M
\(\displaystyle \frac{x^2}{0.65}\;=\;1.3\times 10^{-3}\)
x = 0.029 M
Check assumption.
\(\displaystyle \frac{0.029\;M}{0.65\;M}\times\;100\;=\;4.5\%\)
4.5% < 5% -- our assumption is valid.
pH = -log(0.029) = 1.54
We can look at the second dissociation to see if it makes a difference in the pH.
C4H5O6– (aq) + H2O (l) ⇄ C4H4O62- (aq) + H3O+ (aq)
The concentration of hydronium ion is 0.029 M + x, [C4H4O62-] = x, and [C4H5O6–] = 0.029 – x.
We will assume 0.029 – x and 0.029 + x is ≅ 0.029 M
\(\displaystyle \frac{x(0.029)}{0.029}\;=\;3.98\times 10^{-5}\)
x = 3.98 x 10-5 M
Check assumption.
\(\displaystyle \frac{3.98\times 10^{-5}\;M}{0.029\;M}\times\;100\;=\;0.14\%\)
0.14% < 5% and 0.029 - 3.98 x 10-5 M = 0.029 M
The pH of the solution is 1.54